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Motivation

Nonlinear dynamic economic models (DSGE, optimal
portfolio, etc.) often imply a set of integral equations
(e.g., Euler equations) that do not admit explicit solutions.

Finite-state Markov chain approximations of stochastic
processes are a useful way of reducing the complexity of
solving these models:

∫

becomes
∑

.

Existing methods are not good at or not even capable of
approximating high-dimensional and highly persistent
processes, and only apply to VARs.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Contribution

1 Extend Tanaka and Toda “Discrete Approximations of
Continuous Distributions by Maximum Entropy” (EL, 2013)
to the approximation of stochastic processes.

2 Show that our method is computationally tractable and
provides more accurate approximations than existing methods
for VARs and stochastic volatility models.

3 Our method improves solution accuracy of simple asset pricing
models by many orders of magnitude over existing methods.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Literature

Discrete approximations of VARs Tauchen (1986), Tauchen and
Hussey (1991), Rouwenhorst (1995), Adda &
Cooper (2003), Flodén (2008), Galindev &
Lkhagvasuren (2010), Kopecky & Suen (2010), Terry
& Knotek (2011), Gospodinov & Lkhagvasuren
(2014).

Maximum entropy Shannon (1948), Jaynes (1957), Shore &
Johnson (1980), Borwein & Lewis (1991), Caticha
and Giffin (2006), Tanaka & Toda (2013, 2014,
2015), & many many more.
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Tanaka and Toda (2013)

Goal: Approximate the probability density function f on R
K

by probabilities P = {pn}Nn=1 on a finite discrete subset

DN = {xn,N}Nn=1 ⊂ R
K .

Assume some moments T̄ =
∫

RK T (x)f (x)dx are given,
where T : RK → R

L is a measurable function.

Example: If first and second moments are given, we would
have:

T (x) = (x1, . . . , xK , x
2
1 , . . . , xkxl , . . . , x

2
K )

with L = K + K + K(K−1)
2 for the K expected values, K

variances, and K(K−1)
2 covariances.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Tanaka and Toda (2013)

To match the given moments with a discrete distribution, it
suffices to find probabilities {pn}Nn=1 that satisfy:

N
∑

n=1

pnT (xn,N) = T̄ , (L equations)

N
∑

n=1

pn = 1. (1 equation)

Problem: Number of points in DN , N, is in general much
larger than number of equations, L+ 1.
=⇒ {pn}Nn=1 underdetermined (ill-posed problem).

Solution: Maximum entropy.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Primal problem

Given a discrete subset DN ⊂ R
K , an initial approximation

Q = {qn}Nn=1, a moment defining function T : RK → R
L, and

moments T̄ ∈ R
L, solve:

minimize
{pn}

N
∑

n=1

pn log
pn

qn

subject to

N
∑

n=1

pnT (xn,N) = T̄ ,

N
∑

n=1

pn = 1, (∀n) pn ≥ 0.

That is, find the least informative posterior (in terms of
Kullback-Leibler information) that matches the moments.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Dual problem

Solution to the previous problem, {pn}Nn=1, is given by:

pn =
qne

λ′

N
T (xn,N )

∑N
n=1 qne

λ′

N
T (xn,N)

,

where λN is the Lagrange multiplier to the moment constraint.

λN is a solution to the dual problem (Borwein & Lewis, 1991):

min
λ∈RL

N
∑

n=1

qne
λ′(T (xn,N )−T̄ ).

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Tanaka & Toda (2015, R&R SIAM J. Num. Anal.)

Let EQ
g ,N =

∥

∥

∥

∫

f (x)g(x)dx −∑N
n=1 qng(xn)

∥

∥

∥
be the

integration error of initial distribution Q = {qn}, and define
EP
g ,N similarly.

Let g(x) ≈ bg ,T (x) =
∑L

l=1 blTl (x) be the approximation of

the integrand using the basis functions T = {Tl}Ll=1, and

rg ,T =
g−bg,T

‖g−bg,T‖
∞

be normalized residual.

Obtain the error estimate

EP
g ,N ≤ ‖g − bg ,T‖∞

(

EQ
rg,T ,N +

2√
C
EQ
T ,N

)

,

so the error improves by the factor ‖g − bg ,T ‖∞.

In particular, {pn}Nn=1 weakly converges to f as N → ∞ when

{qn}Nn=1 does.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Some notes

If T̄ is in the interior of the convex hull of T (DN), then the
objective function of dual problem is continuous, strictly
convex, and a unique solution λN exists.
Our original, high-dimensional constrained optimization
problem (N unknowns, L+1 equality constraints, N inequality
constraints) reduces to a low-dimensional unconstrained
convex minimization problem (L unknowns, no constraints).
Example: In 3 dimensions, 10 grid points in each dimension,
and 2 moments (mean & variance) to match, primal problem
has 1000 unknowns and 1010 constraints, while dual has 9
unknowns and no constraints.
Complexity of primal problem is exponential in dimension, but
dual is polynomial.
=⇒ Computationally tractable in multivariate case.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Application to VAR processes

Assume we have a general VAR(1) of the form

xt = b + Bxt−1 + ηt , ηt ∼ N(0,Ψ).

Define the unconditional mean µ = (I − B)−1b, regular
matrix C and diagonal D such that CDC ′ = Ψ
(e.g., Cholesky decomposition).

Finding a discretization of xt is equivalent to finding a
discretization of

yt = Ayt−1 + ǫt , ǫt ∼ N(0,D),

where yt = C−1(xt − µ), A = C−1BC , and ǫt = C−1ηt .

Hence suffices to discretize yt and use the inverse
transformation xt = µ+ Cyt to recover a discretization of xt .

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Application to VAR processes

Problem reduces to discretizing the VAR(1)

yt = Ayt−1 + ǫt , ǫt ∼ N(0,D),

so VAR has zero mean and cross-uncorrelated shocks.

More precisely, we wish to define a finite-state Markov chain
with (S × S) transition matrix P that approximates the
dynamics of our VAR.

Row s of P corresponds to the conditional probability measure
of moving from state s to any other state in the chain. If
P = (pss′), then pss′ is probability of st = s ′ conditional on
st−1 = s.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Outline of procedure

1 Define a set DS = {ȳs}Ss=1 ⊂ R
K , which is the support of the

Markov chain. (More on how to pick DS later.)

2 Conditional on being in state s at time t − 1, the distribution
of yt is N(Aȳs ,D).

3 Since D diagonal, can discretize coordinate-by-coordinate to
discretize vector yt .

Note:

Procedure matches conditional moments by construction.

Since minimizing KL information puts positive probability,
transition probability matrix P is positive.
=⇒ Markov chain is stationary and ergodic by construction.
(c.f., Perron-Frobenius theorem.)

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Practical concerns

Picking the support of the Markov chain:

Tensor grids Even-spaced (Tauchen, 1986), quadrature-based
(Tauchen & Hussey, 1991), quantiles (Adda &
Cooper, 2003).

Non-rectangular grids Epsilon-distinguishable sets (Maliar &
Maliar, 2014).

Picking how many moments to match: 2? 3? 4? more?

Picking initial approximation: proportional, quadrature-based,
uniform.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Generalization to arbitrary stochastic processes

Unlike other procedures previously proposed in the literature,
our method is neither limited to the approximation of VARs
nor the use of tensor grids.

Consider a general nonlinear stochastic process given by

xt = φ(xt−1, εt), εt ∼ Fε.

Assuming that xt is a stationary, ergodic process, and that
certain moments of xt conditional on xt−1 can be computed
(often the case in economic models, e.g., when we know
f (xt |xt−1)), we can apply our method.

Difficulty becomes how to pick support of the Markov chain:
most promising method is probably epsilon-distinguishable
sets.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

AR(1)

Consider AR(1) process

xt = ρxt−1 + ǫt , ǫt ∼ N(0, 1),

with unconditional variance σ2 = 1
1−ρ2

.

Persistence: ρ ∈ {0.5, 0.9, 0.99, 0.999, 0.9999}, number of
discrete points: N ∈ {9, 15, 21}.
Construct 3 different Markov chain approximations:

1 optimized Tauchen (1986),
2 Rouwenhorst (1995), and
3 our method (matching two conditional moments).

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

Simulation exercise

Sample size: T = 2, 000, 000, discard first 200,000
observations as burn-in. Number of Monte Carlo replications:
1,000.

For each Monte Carlo sample, estimate persistence ρ̂ and
unconditional variance σ̂2 by OLS.

For each parameter, compute the root mean-squared error
(RMSE), bias, and standard deviation (SD) relative to their
true values. Example:

RMSE =

√

√

√

√

1

M

M
∑

m=1

(θ̂m − θ)2

/

θ ,

where m = 1, . . . ,M = 1, 000 are Monte Carlo replications
and θ = 1− ρ, σ2 is parameter of interest.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

Root mean-squared error, scaled by 10−3

N ρ Tauchen (optimized) Rouwenhorst FTT (2 moments)
1− ρ̂ σ̂2 1− ρ̂ σ̂2 1− ρ̂ σ̂2

9 0.5 14.785 1.155 1.244 1.209 1.231 0.897
0.9 94.069 2.328 3.054 2.801 3.017 2.187
0.99 41.396 6.349 9.976 9.390 10.151 7.271
0.999 N/A N/A 30.228 28.892 32.141 18.892
0.9999 N/A N/A 102.599 101.321 104.471 81.096

15 0.5 6.532 1.227 1.228 1.270 1.243 1.086
0.9 43.638 2.647 3.113 3.034 3.103 2.579
0.99 226.847 6.454 9.756 9.570 10.007 8.521
0.999 N/A N/A 30.592 29.564 32.230 18.518
0.9999 N/A N/A 93.009 94.525 99.412 77.916

21 0.5 3.767 1.212 1.269 1.264 1.220 1.139
0.9 25.788 2.715 2.995 2.912 3.116 2.658
0.99 165.361 6.798 9.736 9.512 10.207 8.562
0.999 163.418 162.371 31.399 30.575 32.317 19.887
0.9999 N/A N/A 99.173 101.920 98.734 82.396

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

Bias, scaled by 10−3

N ρ Tauchen (optimized) Rouwenhorst FTT (2 moments)
1− ρ̂ σ̂2 1− ρ̂ σ̂2 1− ρ̂ σ̂2

9 0.5 -14.736 -0.007 0.057 -0.022 -0.032 -0.011
0.9 -94.042 -0.039 -0.075 0.058 0.003 -0.029
0.99 -40.812 0.070 0.037 0.059 -0.118 -0.027
0.999 N/A N/A -0.777 1.792 -0.901 1.856
0.9999 N/A N/A -6.341 16.928 -1.685 14.527

15 0.5 -6.415 0.042 0.063 -0.014 -0.028 0.040
0.9 -43.557 -0.005 -0.104 0.134 0.081 -0.073
0.99 -226.788 0.216 -0.318 0.301 0.234 0.028
0.999 N/A N/A -0.191 0.948 -0.288 0.811
0.9999 N/A N/A -11.422 20.950 -3.076 16.806

21 0.5 -3.573 -0.004 -0.022 -0.011 0.041 0.033
0.9 -25.644 -0.009 0.011 -0.072 -0.035 0.140
0.99 -165.259 0.436 0.066 0.079 0.518 -0.240
0.999 161.562 160.713 0.490 0.907 -0.588 1.602
0.9999 N/A N/A -11.229 20.659 0.688 15.841

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

Standard deviation, scaled by 10−3

N ρ Tauchen (optimized) Rouwenhorst FTT (2 moments)
1− ρ̂ σ̂2 1− ρ̂ σ̂2 1− ρ̂ σ̂2

9 0.5 1.204 1.156 1.243 1.209 1.231 0.898
0.9 2.243 2.328 3.054 2.802 3.018 2.188
0.99 6.891 6.352 9.981 9.394 10.156 7.275
0.999 N/A N/A 30.233 28.851 32.145 18.810
0.9999 N/A N/A 102.454 99.947 104.509 79.824

15 0.5 1.234 1.226 1.227 1.270 1.243 1.085
0.9 2.660 2.648 3.113 3.032 3.103 2.579
0.99 5.181 6.454 9.755 9.570 10.010 8.525
0.999 N/A N/A 30.606 29.564 32.244 18.509
0.9999 N/A N/A 92.351 92.220 99.414 76.120

21 0.5 1.195 1.213 1.270 1.265 1.220 1.139
0.9 2.724 2.716 2.996 2.912 3.117 2.656
0.99 5.816 6.787 9.740 9.516 10.199 8.562
0.999 24.573 23.156 31.411 30.577 32.328 19.832
0.9999 N/A N/A 98.584 99.855 98.781 80.900

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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VAR(1)

Consider VAR(1) process used in Gospodinov & Lkhagvasuren
(2014) (henceforth GL):

yt = Ayt−1 + ǫt , ǫt ∼ N(0,Ψ),

A =

[

0.9809 0.0028
0.0410 0.9648

]

, Ψ =

[

0.00872 0
0 0.02622

]

.

Number of points in each dimension: N ∈ {9, 15, 21}.
Construct 3 different Markov chain approximations:

1 GL0 (generalization of Rouwenhorst to VAR),
2 GL (modify GL by targeting 2 conditional moments in primal

problem, so computationally infeasible in high dimension), and
3 our method (matching 2 conditional moments).

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

Simulation exercise

Sample size: T = 2, 000, 000, discard first 200,000
observations as burn-in. Number of Monte Carlo replications:
1,000.

For each Monte Carlo simulation, compute the unconditional
variances, covariance and the eigenvalues of Â.

Compute the root mean-squared error, bias, and standard
deviation of all the estimates relative to their true values.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

Numerical results: VAR(1), scaled by 10−3

N = 9 N = 15 N = 21
GL0 GL FTT GL0 GL FTT GL0 GL FTT

Root mean squared error

σ̂2
z 90.557 8.855 5.873 75.016 7.792 6.356 63.251 7.634 6.993

σ̂2
g 121.753 9.172 4.641 102.118 6.154 5.117 86.865 6.483 5.604

ρ̂zg 23.606 10.666 8.635 11.711 8.707 8.579 10.598 8.684 8.884

1− ζ̂1 14.372 10.561 8.568 8.623 8.536 8.356 8.503 8.321 8.599

1− ζ̂2 6.203 5.252 4.901 4.935 4.984 4.878 5.079 4.964 5.216

Bias

σ̂2
z -90.312 4.910 -0.129 -74.641 0.504 0.118 -62.810 0.376 0.252

σ̂2
g -121.645 6.860 -0.058 -101.958 0.353 0.191 -86.677 0.334 0.104

ρ̂zg 21.773 6.421 -0.056 7.608 0.561 0.028 5.778 0.582 0.254

1− ζ̂1 -12.007 -6.872 0.273 -0.578 -0.517 -0.103 0.172 -0.345 -0.158

1− ζ̂2 -3.302 -2.012 -0.009 -0.521 0.052 -0.277 0.131 -0.027 0.042

Standard deviation

σ̂2
z 6.663 7.373 5.875 7.501 7.779 6.358 7.462 7.629 6.992

σ̂2
g 5.111 6.092 4.643 5.724 6.147 5.116 5.707 6.477 5.606

ρ̂zg 9.125 8.521 8.639 8.907 8.694 8.583 8.889 8.669 8.884

1− ζ̂1 7.902 8.023 8.568 8.608 8.524 8.360 8.505 8.318 8.602

1− ζ̂2 5.253 4.854 4.903 4.910 4.986 4.873 5.080 4.966 5.218

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes



Introduction
Basic idea

Discretizing stochastic processes
Numerical results

Applications
Conclusion

AR(1)
VAR(1)
Stochastic volatility model

Stochastic volatility model

Consider the stochastic volatility model

yt = λyt−1 + exp(xt/2)ut , ut ∼ N(0, 1)

xt = µ (1− ρ) + ρxt−1 + ǫt , ǫt ∼ N(0, σ2)

where xt : log variance, yt : observable (e.g., stock returns).

Since unconditional variance is

σ2
y = E[y2t ] =

E [exp(xt)]

1− λ2
=

1

1− λ2
exp

(

µ+
σ2

2(1− ρ2)

)

,

can choose an even-spaced 3σ grid for yt .

Discretize xt as before (Rouwenhorst or our method).
Discretize yt |xt−1, yt−1 using Tauchen or our method.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

Simulation exercise

Parameter values taken from Caldara, Fernándes-Villaverde,
Rubio-Raḿırez, & Yao (RED, 2012):

Parameter λ µ ρ σ

Value 0.95 -9.3332 0.9 0.06

Generate 1,000 samples of length 100,000 each, run OLS, and
compute λ̂, σ̂y (standard deviation of yt), and κ̂y (kurtosis of
yt).

Report RMSE relative to exact value.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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AR(1)
VAR(1)
Stochastic volatility model

Relative RMSE of stochastic volatility discretization

Nx Ny λ Tauchen-Rouwenhorst FTT

λ̂ σ̂y κ̂y λ̂ σ̂y κ̂y
9 9 0 0.0032 0.0178 0.0398 0.0031 0.0024 0.0331

0.5 0.0059 0.0246 0.0413 0.0056 0.0030 0.0294
0.9 0.0023 0.1010 0.0635 0.0016 0.0068 0.0246
0.95 0.0017 0.1690 0.0844 0.0010 0.0097 0.0532
0.99 0.0087 0.2795 0.1322 0.0006 0.0278 0.1144

15 15 0 0.0030 0.0028 0.0422 0.0032 0.0023 0.0480
0.5 0.0060 0.0045 0.0425 0.0054 0.0030 0.0421
0.9 0.0021 0.0286 0.0533 0.0016 0.0070 0.0190
0.95 0.0015 0.0597 0.0644 0.0010 0.0096 0.0207
0.99 0.0018 0.1979 0.1149 0.0005 0.0224 0.0455

21 21 0 0.0032 0.0032 0.0433 0.0033 0.0023 0.0545
0.5 0.0057 0.0033 0.0431 0.0056 0.0030 0.0481
0.9 0.0020 0.0110 0.0514 0.0016 0.0071 0.0211
0.95 0.0014 0.0253 0.0570 0.0011 0.0101 0.0214
0.99 0.0005 0.1302 0.0967 0.0004 0.0214 0.0402Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Solving asset pricing models

Consider a standard representative-agent asset pricing model
with CRRA utility

∞
∑

t=0

βt C
1−γ
t

1− γ
,

where β = 0.95 and γ = 2.

Single asset (stock) with dividend Dt . Consider three models:
1 Ct = Dt , and consumption growth logCt/Ct−1 is AR(1).
2 Ct 6= Dt , stock is in zero net supply, and consumption growth

and dividend growth (logCt/Ct−1, logDt/Dt−1) is VAR(1).
3 Ct = Dt , and consumption growth obeys the stochastic

volatility model.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Experimental design

Estimate each process from 1947–2014 US data.

For AR(1) and VAR models, a closed-form solution exists
(Burnside, JEDC 1998).

We solve each model using Chebyshev collocation for each
discretization method and compare solution accuracy.

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes
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Results for AR(1) model
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Results for AR(1) model
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Results for AR(1) model
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Results for AR(1) model
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Results for VAR model
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Results for VAR model
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Results for VAR model

TableMean and maximum log10 relative errors for the asset pricing model
with VAR(1) consumption/dividend growth.

Our method Existing methods
N Even-space Quantile Quadrature TH GL0 GL

Mean log10 errors

5 -2.333 -2.277 -4.351 -2.951 -1.651 -1.409
9 -2.669 -2.494 -7.984 -6.775 -2.047 -2.398
13 -2.975 -2.367 -7.702 -7.704 -2.047 -3.163
Maximum log10 errors

5 -1.999 -1.939 -4.126 -2.679 -0.611 -0.580
9 -2.251 -2.056 -7.541 -6.273 -0.724 -0.693
13 -1.998 0.012 -7.363 -6.926 -1.373 -1.337
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Results for stochastic volatility model
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Results for stochastic volatility model
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Conclusion

New method for finite-state Markov chain approximation of
stochastic processes using maximum entropy:

1 Matches an arbitrary number of conditional moments given a
fine enough grid.

2 Outperforms existing methods along most dimensions in terms
of accuracy for linear stochastic processes.

3 Our method applies to any stochastic process. Parametric
model not even necessary (e.g., can estimate transition density
nonparametrically and discretize).

Useful for solving dynamic models with complicated dynamics
(stochastic volatility, etc.) with high accuracy.
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Future work

Generalize to nonlinear stochastic processes.

More interesting applications (e.g., numerical option pricing).

Use for efficiently estimating nonlinear state space models
(as opposed to linear models, e.g., Kalman filter).
(Leland has nice preliminary work.)
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