Discretizing Stochastic Processes with Exact Conditional Moments

Leland E. Farmer Alexis Akira Toda

University of California San Diego

May 4, 2015

Image: A (1) → A (

Motivation

- Nonlinear dynamic economic models (DSGE, optimal portfolio, etc.) often imply a set of integral equations (*e.g.*, Euler equations) that do not admit explicit solutions.
- Finite-state Markov chain approximations of stochastic processes are a useful way of reducing the complexity of solving these models: ∫ becomes ∑.
- Existing methods are not good at or not even capable of approximating high-dimensional and highly persistent processes, and only apply to VARs.

A □ > A □ > A

Contribution

- Extend Tanaka and Toda "Discrete Approximations of Continuous Distributions by Maximum Entropy" (EL, 2013) to the approximation of stochastic processes.
- Show that our method is computationally tractable and provides more accurate approximations than existing methods for VARs and stochastic volatility models.
- Our method improves solution accuracy of simple asset pricing models by many orders of magnitude over existing methods.

Literature

Discrete approximations of VARs Tauchen (1986), Tauchen and Hussey (1991), Rouwenhorst (1995), Adda & Cooper (2003), Flodén (2008), Galindev & Lkhagvasuren (2010), Kopecky & Suen (2010), Terry & Knotek (2011), Gospodinov & Lkhagvasuren (2014).

Maximum entropy Shannon (1948), Jaynes (1957), Shore & Johnson (1980), Borwein & Lewis (1991), Caticha and Giffin (2006), Tanaka & Toda (2013, 2014, 2015), & many many more.

• • • • • • • • • • • •

Tanaka and Toda (2013)

- Goal: Approximate the probability density function f on ℝ^K by probabilities P = {p_n}^N_{n=1} on a finite discrete subset D_N = {x_{n,N}}^N_{n=1} ⊂ ℝ^K.
- Assume some moments $\overline{T} = \int_{\mathbb{R}^K} T(x) f(x) dx$ are given, where $T : \mathbb{R}^K \to \mathbb{R}^L$ is a measurable function.
- **Example**: If first and second moments are given, we would have:

$$T(x) = (x_1, \ldots, x_K, x_1^2, \ldots, x_k x_l, \ldots, x_K^2)$$

(日) (同) (日) (日)

with $L = K + K + \frac{K(K-1)}{2}$ for the K expected values, K variances, and $\frac{K(K-1)}{2}$ covariances.

Tanaka and Toda (2013)

To match the given moments with a discrete distribution, it suffices to find probabilities {p_n}^N_{n=1} that satisfy:

$$\sum_{n=1}^{N} p_n T(x_{n,N}) = \overline{T}, \qquad (L \text{ equations})$$
$$\sum_{n=1}^{N} p_n = 1. \qquad (1 \text{ equation})$$

Problem: Number of points in D_N, N, is in general much larger than number of equations, L + 1. ⇒ {p_n}^N_{n=1} underdetermined (ill-posed problem).
 Solution: Maximum entropy.

Primal problem

• Given a discrete subset $D_N \subset \mathbb{R}^K$, an initial approximation $Q = \{q_n\}_{n=1}^N$, a moment defining function $T : \mathbb{R}^K \to \mathbb{R}^L$, and moments $\overline{T} \in \mathbb{R}^L$, solve:

...

$$\begin{array}{ll} \underset{\{p_n\}}{\text{minimize}} & \sum_{n=1}^{N} p_n \log \frac{p_n}{q_n} \\ \text{subject to} & \sum_{n=1}^{N} p_n T(x_{n,N}) = \bar{T}, \\ & \sum_{n=1}^{N} p_n = 1, \ (\forall n) \ p_n \ge 0 \end{array}$$

• That is, find the least informative posterior (in terms of Kullback-Leibler information) that matches the moments.

Dual problem

• Solution to the previous problem, $\{p_n\}_{n=1}^N$, is given by:

$$p_n = \frac{q_n \mathrm{e}^{\lambda'_N T(\mathbf{x}_{n,N})}}{\sum_{n=1}^N q_n \mathrm{e}^{\lambda'_N T(\mathbf{x}_{n,N})}},$$

where λ_N is the Lagrange multiplier to the moment constraint.

• λ_N is a solution to the dual problem (Borwein & Lewis, 1991):

$$\min_{\lambda\in\mathbb{R}^{L}}\sum_{n=1}^{N}q_{n}\mathrm{e}^{\lambda'(T(x_{n,N})-\bar{T})}.$$

< 🗇 > < 🖻 > <

Tanaka & Toda (2015, R&R SIAM J. Num. Anal.)

- Let $E_{g,N}^Q = \left\| \int f(x)g(x)dx \sum_{n=1}^N q_ng(x_n) \right\|$ be the integration error of initial distribution $Q = \{q_n\}$, and define $E_{g,N}^P$ similarly.
- Let $g(x) \approx b_{g,T}(x) = \sum_{l=1}^{L} b_l T_l(x)$ be the approximation of the integrand using the basis functions $T = \{T_l\}_{l=1}^{L}$, and $r_{g,T} = \frac{g b_{g,T}}{\|g b_{g,T}\|_{\infty}}$ be normalized residual.
- Obtain the error estimate

$$E_{g,N}^{P} \leq \left\|g - b_{g,T}\right\|_{\infty} \left(E_{r_{g,T},N}^{Q} + \frac{2}{\sqrt{C}}E_{T,N}^{Q}\right),$$

so the error improves by the factor $\left\|g-b_{g,\mathcal{T}}\right\|_{\infty}$.

• In particular, $\{p_n\}_{n=1}^N$ weakly converges to f as $N \to \infty$ when $\{q_n\}_{n=1}^N$ does.

Some notes

- If \overline{T} is in the interior of the convex hull of $T(D_N)$, then the objective function of dual problem is continuous, strictly convex, and a unique solution λ_N exists.
- Our original, high-dimensional constrained optimization problem (*N* unknowns, *L* + 1 equality constraints, *N* inequality constraints) reduces to a low-dimensional unconstrained convex minimization problem (*L* unknowns, no constraints).
- **Example**: In 3 dimensions, 10 grid points in each dimension, and 2 moments (mean & variance) to match, primal problem has 1000 unknowns and 1010 constraints, while dual has 9 unknowns and no constraints.
- Complexity of primal problem is exponential in dimension, but dual is polynomial.
 - → Computationally tractable in multivariate case.

Application to VAR processes

• Assume we have a general VAR(1) of the form

$$x_t = b + Bx_{t-1} + \eta_t, \ \eta_t \sim N(0, \Psi).$$

- Define the unconditional mean μ = (I B)⁻¹b, regular matrix C and diagonal D such that CDC' = Ψ (e.g., Cholesky decomposition).
- Finding a discretization of x_t is equivalent to finding a discretization of

$$y_t = Ay_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, D),$$

where $y_t = C^{-1}(x_t - \mu)$, $A = C^{-1}BC$, and $\epsilon_t = C^{-1}\eta_t$.

 Hence suffices to discretize y_t and use the inverse transformation x_t = μ + Cy_t to recover a discretization of x_t.

Application to VAR processes

• Problem reduces to discretizing the VAR(1)

$$y_t = Ay_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, D),$$

so VAR has zero mean and cross-uncorrelated shocks.

- More precisely, we wish to define a finite-state Markov chain with (S × S) transition matrix P that approximates the dynamics of our VAR.
- Row s of P corresponds to the conditional probability measure of moving from state s to any other state in the chain. If $P = (p_{ss'})$, then $p_{ss'}$ is probability of $s_t = s'$ conditional on $s_{t-1} = s$.

- 4 回 ト - 4 回 ト

Outline of procedure

- Define a set $D_S = {\{\bar{y}_s\}}_{s=1}^S \subset \mathbb{R}^K$, which is the support of the Markov chain. (More on how to pick D_S later.)
- Conditional on being in state s at time t 1, the distribution of y_t is $N(A\bar{y}_s, D)$.
- Since D diagonal, can discretize coordinate-by-coordinate to discretize vector y_t.

Note:

- Procedure matches conditional moments by construction.
- Since minimizing KL information puts positive probability, transition probability matrix *P* is positive.
 - \implies Markov chain is stationary and ergodic by construction.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(c.f., Perron-Frobenius theorem.)

Practical concerns

- Picking the support of the Markov chain:
 - Tensor grids Even-spaced (Tauchen, 1986), quadrature-based (Tauchen & Hussey, 1991), quantiles (Adda & Cooper, 2003).

Non-rectangular grids Epsilon-distinguishable sets (Maliar & Maliar, 2014).

- Picking how many moments to match: 2? 3? 4? more?
- Picking initial approximation: proportional, quadrature-based, uniform.

Generalization to arbitrary stochastic processes

- Unlike other procedures previously proposed in the literature, our method is neither limited to the approximation of VARs nor the use of tensor grids.
- Consider a general nonlinear stochastic process given by

$$x_t = \phi(x_{t-1}, \varepsilon_t), \ \varepsilon_t \sim F_{\varepsilon}.$$

- Assuming that x_t is a stationary, ergodic process, and that certain moments of x_t conditional on x_{t-1} can be computed (often the case in economic models, *e.g.*, when we know f(x_t|x_{t-1})), we can apply our method.
- Difficulty becomes how to pick support of the Markov chain: most promising method is probably epsilon-distinguishable sets.

AR(1) VAR(1) Stochastic volatility model

< ロ > < 同 > < 三 > < 三

• Consider AR(1) process

$$x_t = \rho x_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, 1),$$

with unconditional variance $\sigma^2 = \frac{1}{1-\rho^2}$.

- Persistence: $\rho \in \{0.5, 0.9, 0.99, 0.999, 0.9999\}$, number of discrete points: $N \in \{9, 15, 21\}$.
- Construct 3 different Markov chain approximations:
 - optimized Tauchen (1986),
 - 2 Rouwenhorst (1995), and
 - our method (matching two conditional moments).

AR(1) VAR(1) Stochastic volatility model

Simulation exercise

- Sample size: T = 2,000,000, discard first 200,000 observations as burn-in. Number of Monte Carlo replications: 1,000.
- For each Monte Carlo sample, estimate persistence $\hat{\rho}$ and unconditional variance $\hat{\sigma}^2$ by OLS.
- For each parameter, compute the root mean-squared error (RMSE), bias, and standard deviation (SD) relative to their true values. Example:

$$\mathsf{RMSE} = \sqrt{\frac{1}{M} \sum_{m=1}^{M} (\hat{\theta}_m - \theta)^2} / \theta$$

where m = 1, ..., M = 1,000 are Monte Carlo replications and $\theta = 1 - \rho, \sigma^2$ is parameter of interest.

AR(1) VAR(1) Stochastic volatility model

Root mean-squared error, scaled by 10^{-3}

N	ρ	Tauchen (optimized)		Rouwe	Rouwenhorst		FTT (2 moments)	
		$1-\hat{ ho}$	$\hat{\sigma}^2$	$1-\hat{ ho}$	$\hat{\sigma}^2$	$1-\hat{ ho}$	$\hat{\sigma}^2$	
9	0.5	14.785	1.155	1.244	1.209	1.231	0.897	
	0.9	94.069	2.328	3.054	2.801	3.017	2.187	
	0.99	41.396	6.349	9.976	9.390	10.151	7.271	
	0.999	N/A	N/A	30.228	28.892	32.141	18.892	
	0.9999	N/A	N/A	102.599	101.321	104.471	81.096	
15	0.5	6.532	1.227	1.228	1.270	1.243	1.086	
	0.9	43.638	2.647	3.113	3.034	3.103	2.579	
	0.99	226.847	6.454	9.756	9.570	10.007	8.521	
	0.999	N/A	N/A	30.592	29.564	32.230	18.518	
	0.9999	N/A	N/A	93.009	94.525	99.412	77.916	
21	0.5	3.767	1.212	1.269	1.264	1.220	1.139	
	0.9	25.788	2.715	2.995	2.912	3.116	2.658	
	0.99	165.361	6.798	9.736	9.512	10.207	8.562	
	0.999	163.418	162.371	31.399	30.575	32.317	19.887	
	0.9999	N/A	N/A	99.173	101.920	98,734	82.396	

Leland E. Farmer, Alexis Akira Toda

Discretizing Stochastic Processes

AR(1) VAR(1) Stochastic volatility model

Bias, scaled by 10^{-3}

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nized) Rouwenhorst FTT (2 mo	FTT (2 moments)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{\sigma}^2$ $1-\hat{ ho}$ $\hat{\sigma}^2$ $1-\hat{ ho}$	$\hat{\sigma}^2$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.007 0.057 -0.022 -0.032 -	0.011	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.039 -0.075 0.058 0.003 -	0.029	
0.999 N/A N/A -0.777 1.792 -0.901 1.856 0.9999 N/A N/A -6.341 16.928 -1.685 14.52' 15 0.5 -6.415 0.042 0.063 -0.014 -0.028 0.040	.070 0.037 0.059 -0.118 -	0.027	
0.9999 N/A N/A -6.341 16.928 -1.685 14.52' 15 0.5 -6.415 0.042 0.063 -0.014 -0.028 0.040	J/A -0.777 1.792 -0.901	L.856	
15 0.5 -6.415 0.042 0.063 -0.014 -0.028 0.040	J/A -6.341 16.928 -1.685 1	4.527	
	.042 0.063 -0.014 -0.028 0).040	
0.9 -43.557 -0.005 -0.104 0.134 0.081 -0.073	.005 -0.104 0.134 0.081 -	0.073	
0.99 -226.788 0.216 -0.318 0.301 0.234 0.028	.216 -0.318 0.301 0.234 ().028	
0.999 N/A N/A -0.191 0.948 -0.288 0.811	J/A -0.191 0.948 -0.288 ().811	
0.9999 N/A N/A -11.422 20.950 -3.076 16.800	J/A -11.422 20.950 -3.076 1	6.806	
21 0.5 -3.573 -0.004 -0.022 -0.011 0.041 0.033	.004 -0.022 -0.011 0.041 ().033	
0.9 -25.644 -0.009 0.011 -0.072 -0.035 0.140	.009 0.011 -0.072 -0.035 ().140	
0.99 -165.259 0.436 0.066 0.079 0.518 -0.240	.436 0.066 0.079 0.518 -	0.240	
0.999 161.562 160.713 0.490 0.907 -0.588 1.602	0.713 0.490 0.907 -0.588	1.602	
0.9999 N/A N/A -11.229 20.659 0.688 ≥ 15.84	J/A -11.229 20.659 0.688 = 1	5.841	

AR(1) VAR(1) Stochastic volatility model

Standard deviation, scaled by 10^{-3}

N	ρ	Tauchen (optimized)		Rouwe	nhorst	FTT (2 moments)	
		$1-\hat{ ho}$	$\hat{\sigma}^2$	$1-\hat{ ho}$	$\hat{\sigma}^2$	$1-\hat{ ho}$	$\hat{\sigma}^2$
9	0.5	1.204	1.156	1.243	1.209	1.231	0.898
	0.9	2.243	2.328	3.054	2.802	3.018	2.188
	0.99	6.891	6.352	9.981	9.394	10.156	7.275
	0.999	N/A	N/A	30.233	28.851	32.145	18.810
	0.9999	N/A	N/A	102.454	99.947	104.509	79.824
15	0.5	1.234	1.226	1.227	1.270	1.243	1.085
	0.9	2.660	2.648	3.113	3.032	3.103	2.579
	0.99	5.181	6.454	9.755	9.570	10.010	8.525
	0.999	N/A	N/A	30.606	29.564	32.244	18.509
	0.9999	N/A	N/A	92.351	92.220	99.414	76.120
21	0.5	1.195	1.213	1.270	1.265	1.220	1.139
	0.9	2.724	2.716	2.996	2.912	3.117	2.656
	0.99	5.816	6.787	9.740	9.516	10.199	8.562
	0.999	24.573	23.156	31.411	30.577	32.328	19.832
	0.9999	N/A	N/A	98.584	99.855	<98.781 →	80.900 =

Leland E. Farmer, Alexis Akira Toda

Discretizing Stochastic Processes

AR(1) **VAR(1)** Stochastic volatility model

• Consider VAR(1) process used in Gospodinov & Lkhagvasuren (2014) (henceforth GL):

$$y_t = Ay_{t-1} + \epsilon_t, \qquad \epsilon_t \sim N(0, \Psi),$$

$$A = \begin{bmatrix} 0.9809 & 0.0028 \\ 0.0410 & 0.9648 \end{bmatrix}, \qquad \Psi = \begin{bmatrix} 0.0087^2 & 0 \\ 0 & 0.0262^2 \end{bmatrix}.$$

- Number of points in each dimension: $N \in \{9, 15, 21\}$.
- Construct 3 different Markov chain approximations:
 - GL0 (generalization of Rouwenhorst to VAR),
 - GL (modify GL by targeting 2 conditional moments in primal problem, so computationally infeasible in high dimension), and

ロト (得) (ヨ) (ヨ)

our method (matching 2 conditional moments).

AR(1) **VAR(1)** Stochastic volatility model

· < /₽ > < ∃ >

Simulation exercise

- Sample size: T = 2,000,000, discard first 200,000 observations as burn-in. Number of Monte Carlo replications: 1,000.
- For each Monte Carlo simulation, compute the unconditional variances, covariance and the eigenvalues of \hat{A} .
- Compute the root mean-squared error, bias, and standard deviation of all the estimates relative to their true values.

AR(1) VAR(1) Stochastic volatility model

Numerical results: VAR(1), scaled by 10^{-3}

	<i>N</i> = 9				N = 15			N = 21	
	GL0	GL	FTT	GL0	GL	FTT	GL0	GL	FTT
Root m	ean squared	d error							
$\hat{\sigma}_z^2$	90.557	8.855	5.873	75.016	7.792	6.356	63.251	7.634	6.993
$\hat{\sigma}_{g}^{2}$	121.753	9.172	4.641	102.118	6.154	5.117	86.865	6.483	5.604
$\hat{\rho}_{zg}$	23.606	10.666	8.635	11.711	8.707	8.579	10.598	8.684	8.884
$1 - \hat{\zeta}_1$	14.372	10.561	8.568	8.623	8.536	8.356	8.503	8.321	8.599
$1 - \hat{\zeta}_2$	6.203	5.252	4.901	4.935	4.984	4.878	5.079	4.964	5.216
Bias									
$\hat{\sigma}_z^2$	-90.312	4.910	-0.129	-74.641	0.504	0.118	-62.810	0.376	0.252
$\hat{\sigma}_{g}^{2}$	-121.645	6.860	-0.058	-101.958	0.353	0.191	-86.677	0.334	0.104
$\hat{\rho}_{zg}$	21.773	6.421	-0.056	7.608	0.561	0.028	5.778	0.582	0.254
$1 - \hat{\zeta}_1$	-12.007	-6.872	0.273	-0.578	-0.517	-0.103	0.172	-0.345	-0.158
$1 - \hat{\zeta}_2$	-3.302	-2.012	-0.009	-0.521	0.052	-0.277	0.131	-0.027	0.042
Standar	rd deviation								
$\hat{\sigma}_z^2$	6.663	7.373	5.875	7.501	7.779	6.358	7.462	7.629	6.992
$\hat{\sigma}_{g}^{2}$	5.111	6.092	4.643	5.724	6.147	5.116	5.707	6.477	5.606
$\hat{\rho}_{zg}$	9.125	8.521	8.639	8.907	8.694	8.583	8.889	8.669	8.884
$1 - \hat{\zeta}_1$	7.902	8.023	8.568	8.608	8.524	8.360	8.505	8.318	8.602
$1 - \hat{\zeta}_2$	5.253	4.854	4.903	4.910	4.986	4.873	5.080	4.966	5.218

Leland E. Farmer, Alexis Akira Toda

Discretizing Stochastic Processes

AR(1) VAR(1) Stochastic volatility model

Stochastic volatility model

• Consider the stochastic volatility model

$$y_t = \lambda y_{t-1} + \exp(x_t/2)u_t, \qquad u_t \sim N(0, 1)$$

$$x_t = \mu (1 - \rho) + \rho x_{t-1} + \epsilon_t, \qquad \epsilon_t \sim N(0, \sigma^2)$$

where x_t : log variance, y_t : observable (*e.g.*, stock returns).

• Since unconditional variance is

$$\sigma_y^2 = \mathsf{E}[y_t^2] = \frac{\mathsf{E}\left[\exp(x_t)\right]}{1 - \lambda^2} = \frac{1}{1 - \lambda^2} \exp\left(\mu + \frac{\sigma^2}{2(1 - \rho^2)}\right),$$

can choose an even-spaced 3σ grid for y_t .

Discretize x_t as before (Rouwenhorst or our method).
 Discretize y_t | x_{t-1}, y_{t-1} using Tauchen or our method.

AR(1) VAR(1) Stochastic volatility model

(日本) (日本)

Simulation exercise

 Parameter values taken from Caldara, Fernándes-Villaverde, Rubio-Ramírez, & Yao (RED, 2012):

Parameter	λ	μ	ρ	σ
Value	0.95	-9.3332	0.9	0.06

- Generate 1,000 samples of length 100,000 each, run OLS, and compute λ̂, σ̂_y (standard deviation of y_t), and κ̂_y (kurtosis of y_t).
- Report RMSE relative to exact value.

AR(1) VAR(1) Stochastic volatility model

Relative RMSE of stochastic volatility discretization

N_{x}	N_y	λ	Tauch	en-Rouwe	enhorst		FTT	
			$\hat{\lambda}$	$\hat{\sigma}_y$	$\hat{\kappa}_y$	$\hat{\lambda}$	$\hat{\sigma}_y$	$\hat{\kappa}_y$
9	9	0	0.0032	0.0178	0.0398	0.0031	0.0024	0.0331
		0.5	0.0059	0.0246	0.0413	0.0056	0.0030	0.0294
		0.9	0.0023	0.1010	0.0635	0.0016	0.0068	0.0246
		0.95	0.0017	0.1690	0.0844	0.0010	0.0097	0.0532
		0.99	0.0087	0.2795	0.1322	0.0006	0.0278	0.1144
15	15	0	0.0030	0.0028	0.0422	0.0032	0.0023	0.0480
		0.5	0.0060	0.0045	0.0425	0.0054	0.0030	0.0421
		0.9	0.0021	0.0286	0.0533	0.0016	0.0070	0.0190
		0.95	0.0015	0.0597	0.0644	0.0010	0.0096	0.0207
		0.99	0.0018	0.1979	0.1149	0.0005	0.0224	0.0455
21	21	0	0.0032	0.0032	0.0433	0.0033	0.0023	0.0545
		0.5	0.0057	0.0033	0.0431	0.0056	0.0030	0.0481
		0.9	0.0020	0.0110	0.0514	0.0016	0.0071	0.0211
		0.95	0.0014	0.0253	0.0570	0.0011	0.0101	0.0214
		Laborat E	E	ALC: TO IT	D'	Charles of the		

Solving asset pricing models

 Consider a standard representative-agent asset pricing model with CRRA utility

$$\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma},$$

where $\beta = 0.95$ and $\gamma = 2$.

- Single asset (stock) with dividend D_t . Consider three models:
 - $C_t = D_t$, and consumption growth log C_t/C_{t-1} is AR(1).
 - 2 $C_t \neq D_t$, stock is in zero net supply, and consumption growth and dividend growth $(\log C_t/C_{t-1}, \log D_t/D_{t-1})$ is VAR(1).

・ロト ・同ト ・ヨト ・ヨト

C_t = D_t, and consumption growth obeys the stochastic volatility model.

Experimental design

- Estimate each process from 1947-2014 US data.
- For AR(1) and VAR models, a closed-form solution exists (Burnside, JEDC 1998).
- We solve each model using Chebyshev collocation for each discretization method and compare solution accuracy.

< A >

Conclusio

Results for AR(1) model

Conclusio

Results for AR(1) model

Conclusio

Results for AR(1) model

3

Conclusio

Results for AR(1) model

э.

Results for VAR model

Results for VAR model

Results for VAR model

TableMean and maximum \log_{10} relative errors for the asset pricing model with VAR(1) consumption/dividend growth.

		Our method	Exis	ting met	nods	
Ν	Even-space	Even-space Quantile		ΤH	GL0	GL
Mean log ₁₀ errors						
5	-2.333	-2.277	-4.351	-2.951	-1.651	-1.409
9	-2.669	-2.494	-7.984	-6.775	-2.047	-2.398
13	-2.975	-2.367	-7.702	-7.704	-2.047	-3.163
Ma.	ximum log ₁₀ é	errors				
5	-1.999	-1.939	-4.126	-2.679	-0.611	-0.580
9	-2.251	-2.056	-7.541	-6.273	-0.724	-0.693
13	-1.998	0.012	-7.363	-6.926	-1.373	-1.337

Leland E. Farmer, Alexis Akira Toda Discretizing Stochastic Processes

Results for stochastic volatility model

Results for stochastic volatility model

- New method for finite-state Markov chain approximation of stochastic processes using maximum entropy:
 - Matches an arbitrary number of conditional moments given a fine enough grid.
 - Outperforms existing methods along most dimensions in terms of accuracy for linear stochastic processes.
 - Our method applies to any stochastic process. Parametric model not even necessary (*e.g.*, can estimate transition density nonparametrically and discretize).

• Useful for solving dynamic models with complicated dynamics (stochastic volatility, etc.) with high accuracy.

- Generalize to nonlinear stochastic processes.
- More interesting applications (*e.g.*, numerical option pricing).
- Use for efficiently estimating nonlinear state space models (as opposed to linear models, *e.g.*, Kalman filter). (Leland has nice preliminary work.)